

KULI DRIVE

3rd KULI User Meeting 17th – 18th Oct 2001

Simulation of transient processes for real driving cycles

Th. Gumpoldsberger, ECS, Steyr

KULI MODULES

KULI DRIVE

Content:

- Overview
- Examples
- Requirements
- Measurement
- Data Analysis
- Preferred KULI Model
- Balanced Model

KULI DRIVE - Overview

- **Simulation Targets**
 - Heating-Up
 (steady boundary conditions)
 - Driving Cycle Simulation (unsteady boundary conditions)
 - Parameter Determination (thermostat opening, fan activation, ...)

KULI DRIVE - Overview

> Time Dependent Variables in KULI

- Driving Speed
- Engine RPM
- Effective Mean Pressure
 - fan speed
 - top hose temperatures
 - rejected heat
 - mass flow rate
- Ambient Parameters
- E-Fan Stages

	8 ⇔ 🗖 ⊦ 4 ⊾ ⊧	5 🗖 🦣) 😫 器 🔺 M P Q	\ IIII 	i 🔶 📄 (2011 - 2011 - 2011	∎⊘X∙ ≒≓€	► — X ∋ # T	3 8 Đ
😰 General data о 🕅 Inner circuit	🕻 Air side 📠	Simul. paran	n.	n		<u> </u>		
C Steady State 🤄 Transient							ns	
	Time	EngineRPM [rpm]	pme [bar]	Speed [km/h]	Warm-up temp.	Amb.temp. [°C]	A/C on	T
Air pr [bPa]	4000	1000	6	30	10	8.5	0	-
A. 1 1943	4430	1000	6	30	10	8.5	0	
Airmst [%] [40	4445	1725.6	18	30	10	8.5	0	
Start time 4300	4447	1690.4	18	30	10	8.5	0	
End time 5300	4448.9	1754.9	18	30	10	8.5	0	
T 0	4450.9	1763.7	18	30	10	8.5	0	
Time Step 2	4452.8	1680.2	18	30	10	8.5	0	
Use only defined time steps	4454.8	1721.2	18	30	10	8.5	0	
	4456.7	1636.2	18	30	10	8.5	0	
	4458.7	1656.7	18	30	10	8.5		
	4460.6	1623	18	30	10	8.5		_
	4462.6	1450.2 1007.5	18	30	1 10	8.5	1 0	
	4464.5	1687.5	18					
	4466.5	1546.3	18					
	4468.4	1046.3	10		×			
	4470.4	1412.1	18	<u>e</u>				
	4472.3	1513.2	18	0				
	4476.2	1570.3	18	۲	1.4			
	4478.2	1522	18	Y Y				
	1	· Viala		11	¥ 💡			
				8	X 🗛			
				A	\sim			
					- N			
					<u> </u>			
					\sim		S	- ×
					\sim		- V	

> Sensor Dependent Actuator Values

KULI DRIVE - Examples

Transient Analysis – Synthetic Driving Cycle

KULI DRIVE - Examples

Transient Analysis – Real Driving Cycle

KULI DRIVE - Requirements

Transient Analysis – Required Data

Steady State Balanced Cooling System

- Heat Map of the Engine
- Mass Flows
- Built-In Resistance
- Media Temperatures
- ...

> Transient Balanced Cooling System

- Coolant Temperatures vs. Time
- Fan speed vs. Time
- Engine Load and Speed vs. Time

KULI DRIVE - Measurement

Transient Analysis – Measurement

KULI DRIVE - Data Analysis

- **Transient Analysis Measurement Analysis**
- > Automatic Balancing

Use of the HEATSIM Engine

Manual Balancing

Analysis of the Measurement Data

- Heat Input
- Heat Output
- Change of temperatures

KULI DRIVE - Data Analysis

Manual Balancing

KULI DRIVE - Data Analysis

Manual Balancing

Engine Model: Heat Flow Diagram

> Engine Model: KULI

1.Water circuit

1.PM: Direct Heated Masses Heat Transfer Area * Heat Transfer Coefficient is very high

2.PM: Indirect Heated Masses Heat Transfer Area * Heat Transfer Coefficient of the Balancing

> Engine Model KULI: Balancing Parameters

KULI DRIVE – Balanced Model

KULI DRIVE - Examples

Transient Analysis – Real Driving Cycle

KULI DRIVE - Examples

Transient Analysis – Synthetic Driving Cycle

Summary – DRIVE Transient

> Driving Cycle

- Accurate prediction
- Low effort
- Verification of steady state designed systems for transient driving cycles

> Parameter Determination

- Thermostat opening
- Strategy for fan activation
- Fuel reduction for high coolant temperatures
- Development of emergency strategies

Future Development KULI – DRIVE Transient

> Downgraded HEATSIM-Engine

- 2-mass Model (Coolant Circuit)
- 4-mass Model (Coolant and Oil Circuit)
- Automatic Balancing
- Internal Heat Transfer in the Engine (Oil to Coolant)

> Integrated Driving Simulation

- Road Profile
- Gearbox
- Resistances
- Engine data
- Vehicle data

Thank You For Your Attention

Thomas Gumpoldsberger, and the ECS-Steyr KULI Team