Application of KULI for Study of Cooling System in Heavy Duty Truck

2003, 6. 25 Junghwan Lim

HYUNDRI·KIA MOTORS (I)

Contents

Background

□ Model Set-Up

🗅 Analysis I

□ Analysis II

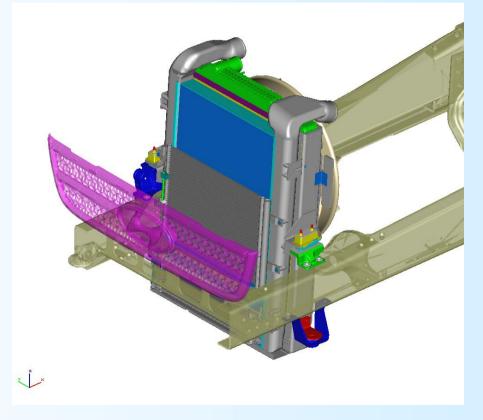
□ Conclusion

Background

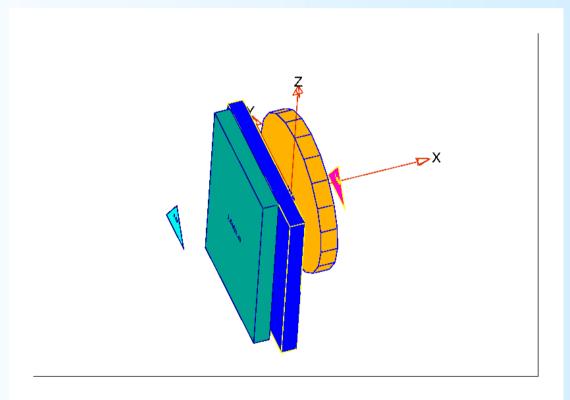
Emission Control Plan in Korea

- EURO III in 2004
- EURO IV in 2006
- EURO V in 2008
- Modified Engine Configuration Requires Enhanced Cooling Performance
 - Higher Heat Rejection By Coolant: 9.3% Increase
 - Higher Pressure and Temperature for CAC Inlet: Pr. 13.2%, Temp. 35.3% Increase

Improve Cooling Package Capabilities


Engine Specifications

	Cooling Circuit		Charge Air Circuit		ircuit	
	Mass Flow (kg/s)	Inlet Pr. (hPa)	Heat Rejection (kw)	Mass Flow (kg/s)	Inlet Pr. (hPa)	Inlet Temp. (℃)
Old Engine	7.91	2030	128.2	0.48	2680	157.4
04 EM Engine	7.49	2030	140.1	0.527	3033	213.0
+/-(%)	+ 5.3	0	+ 9.3	+ 9.8	+ 13.2	+ 35.3


Data for 04 EM Engine are estimated values

Cooling Package Schematic

□ Air Side Lay-out In KULI

KIN HYUNDRI·KIA MOTORS

□ Major Characteristics of Model

- Cp = 0.9
- Radiator: Fin Tube type, -z direction
- CAC: Fin Tube type, -y direction
- BIR: Determined by correlation with Test data
- Fan: Eaton, Ring type, Transmission ratio, Viscous Clutch Locked
- Driving Speed: 22 Km/h, 1800 RPM
- Air Conditioner is off
- Warm-up Temp.: 2℃

□ Model Correlation

 Determine Built-In-Resistance value to match ACT and IMTD values from the KULI Model to Test data, with an old engine

$$\triangle P (Pa) = K Q^2 (m^3/s); K = 90$$

	Radiator		Charge Air Cooler		poler	
	T _{in} (℃)	T _{out}	АСТ	T _{in}	T _{out}	IMTD
Test	91	86	39	163	50	25
Model	91.09	86.16	38.95	163.00	50.41	25.41

* ACT: Air Clearance Temp = 105 – (Rad. Inlet Temp – Amb Temp.) IMTD: Intake Manifold Temp. Difference = CAC Outlet Temp – Amb Temp

Cu Radiator

□ Target for ACT & IMTD

- ACT: 43°C ↑
- IMTD: 21°C ↓

□ 04EM Engine + Current Cooling Package

		Margin
ACT	42.17 ℃	-0.83
IMTD	25.01 °C	-4.01
Cooling Air 3.093		kg/s

Need to improve Cooling Performance of Radiator and CAC!!

KIN HYUNDAI·KIA MOTORS

□ Fan Drive Ratio Increase

 $1.14 \rightarrow 1.33$

		Margin
ACT	51.68 °C	+ 9.68
IMTD	21.85 °C	-0.85
Cooling Air	3.705	kg/s

Target almost satisfied! But IMTD need to be improved!

□ Radiator & CAC Size Increase

Approx. 10 % increase in Height

	Size (W×H×D, mm)	Core Type	Material
Rad.	729.5×897×66	Louver Fin (F.P = 2.8)	Cu
CAC	566×955×68	Wave Fin (F.P = 3.8)	Al

KIN HYUNDAI·KIA MOTORS

		Margin
АСТ	41.59 ℃	-1.41
IMTD	16.23 ℃	+ 4.77
Cooling Air	3.049	kg/s

ACT should be improved!

□ Radiator & CAC Size Increase

Approx. 10 % increase in Height

□ Rad. Fin Pitch Increase $2.80 \rightarrow 3.68 \text{ mm}$

		Margin
ACT	42.29 ℃	-0.71
IMTD	15.92 ℃	+ 5.08
Cooling Air	3.142	2 kg/s

ACT slightly improved, but still need to be improved!

□ What we found out from Analysis I

- Increasing sizes of the heat exchangers only helps improve IMTD, but not much for ACT.

To improve ACT, better increase cooling air flow.

Radiator material change proposed

Due to weight saving and manufacturing issue in radiator supplier, Copper rad. is required to switch to Aluminum one.

Al Radiator

□ Various Al Radiators Applied; $Cu \rightarrow Al$

Rad. Specs.

Case No.	Radiator Size (W× H× D, mm)	Core Type	Material
1	$718.2 \times 894 \times 48$	Wave Fin (F.P = 4.0)	Al
2	718.2 imes 894 imes 60	Wave Fin (F.P = 4.0)	Al
3	718.2 imes 894 imes 48	Louver Fin (F.P = 4.0)	Al
4	718.2 imes 894 imes 60	Louver Fin (F.P = 4.0)	Al

□ Various AL Radiators Applied; $C_u \rightarrow Al$

100001	- Rebuitb				
Case No.	ACT (°C)	IMTD (°C)	Air Flow (kg/s)		
1	6.23 (-36.77)	17.50 (+ 3.5)	3.329		
2	25.22 (-17.18)	17.63 (+ 3.37)	3.296		
3	2.96 (-40.04)	17.46 (+ 3.54)	3.336		
4	41.60 (-1.4)	18.36 (+ 2.64)	3.139		

Results

Recommended Arrangement

Al Rad. Case 4 + Fan Drive Ratio 1.2

		Margin
ACT	44.89 ℃	+ 1.89
IMTD	17.38 ℃	+ 3.62
Cooling Air	3.357	⁷ kg/s

Can meet the requirements !!

Conclusion

- The combination of AL Rad. (718.2×894×60, Louver Fin, F.P = 4.0), AL CAC (566×955×68, Wave Fin, F.P = 3.8), and Increased Fan Ratio 1.2 are recommended for the cooling package of a new engine.
- The characteristic data of the components are very crucial to accurate prediction of the cooling performance in KULI model.
- The results of KULI calculation should/will be compared with the test data to justify the use of BIR and air side simulation.

