

Influence of the 3D-CFD Fan Modeling Depth onto the coupled 1D-3D Simulation of a Cooling Package

H. Petutschnig	AVL, ViF
T. Hörmann	ViF
A. Bregant	AVL
A. Ennemoser	AVL
T. Moshammer	MSF

- Cooperation "Virtual Vehicle" and AVL
- Motivation
- Measurements in the Test Bench
- Approaches for Fan Modeling in 3D-CFD
- CFD Simulation Model
- KULI Simulation Model
- Results and Conclusions
- Outlook

KULI User Meeting 2005

Diese Arbeit wurde im

gefördert aus Mitteln

des Landes Steiermark,

Kompetenzzentren-Program

der Stadt Graz

Stadt

des K plus Kompetenzzentren-Programm,

plus

GRAZ

der Steirischen Wirtschaftsförderungsgesellschaft mbH und

Wissenschaft

Kompetenzzentrum - Das virtuelle Fahrzeug Forschungsgesellschaft mbH abgewickelt,

The Virtual Vehicle - ViF

Center of Competence "The Virtual Vehicle"

Business manager

Dr. J. Bernasch

Scientific head

Research Areas:

- Mechanics (Vehicle Safety, Structural Analysis,...)
- Thermal Management and Fluid Dynamics
- Virtual Engineering
- Virtual Manufacturing
- ~ 60 employees

Cooperation AVL - ViF

 Fundamental R&D outsourced to potential partners with strong affinity to university (TU-Graz)

 Integration of the developped methods and models into the product development process of AVL

 Industrial application of the integrated, methods

Advanced methods applied in the Engineering Process

- Method Development
- Benchmarks

Cooperation

Engineering Services

Heinz Petutschnig

KULI User Meeting 2005

Motivation

- Enforced integration of numerical development tools in the vehicle development process
- Request for increased accuracy in simulation results
- Accuracy of simulation results highly depend on quality of prescribed input and boundary conditions
- Coupled thermal analysis
- Sensitive boundary conditions for 1D cooling circuit analysis
 - Investigation of fan driven cooling conditions
 - Sensitivity of inhomogeneous flow field onto heat transfer at the radiators
 - Integration of 3D-CFD analysis for fan driven flow field
 - Investigation of different approaches for 3D-CFD fan modeling and its impact on the resulting heat rejection

Test Bench

For Validation of Simulation Models and Results:

Test Bench: Characteristic Figures

Test Chamber

- 0.78 m x 0.57 m x 2 m
- Side Walls are glas made for LDAmeasurements

Coolant-Side

- Coolant flow up to 10.000 l/h
- Temperature 110 °C (~ 70 kW)

Air -Side

- Cooling Airflow up to 3 kg/s
- Air Temperature up to 50 °C
- Very low Turbulent Rate

FIONLENG

Heinz Petutschnig

Validation of 3D-CFD Simulation

CFD - Fan Modeling

FAN - Modeling					
	Fan Meshing	Numerical Treatment	FAN v_abs		
User Function	Not required	Axial inflow assumption Velocity Triangles at the outlet	Fan inlet Fan outlet		
Multiple Frame of Reference	Yes	Stationary frame and rotating reference frame			
Sliding Mesh	Yes	Sliding mesh is used in order to model the motion of the blades			

CFD - Fan Modeling

FAN - Modeling					
	Preprocessing Costs	Solver Costs (CPU, memory, time)	Run Mode		
User Function	Low	Low	Steady state		
Multiple Frame of Reference	High	Medium	Steady state		
Sliding Mesh	High	High	Transient		

CFD – The Mesh

Inlet

Mass Flow Boundary Condition

CFD – The Mesh

Front View

Investigated Operating Points

Investigated OPERATING POINTS				
	Point A	Point B		
Inlet Air Mass Flow	0.855	0.600	kg/s	
Inlet Air Temperature	27	27	C°	
Fan Speed	1960	980	rpm	
Coolant Mass Flow	1.200	1.200	kg/s	
Coolant Inlet Temperature	99.5	99.5	°C	
ETD	72.5	72.5	C°	

Investigated FAN MODELING TECHNIQUES				
	Point A	Point B		
User Function	x	x		
Blocked Fan	x	x		
MRF (Multiple Frame of Reference)	x	х		
Sliding Mesh	-	-		

Heinz Petutschnig

KULI User Meeting 2005

Vertical Cut: Velocity Scan

Point A:

m_{air} = 0.855 kg/s Fan: 1960 rpm CFD Model: MRF

Heinz Petutschnig

KULI User Meeting 2005

Velocity Distribution: Horizontal Cut

Point A: Constant Mass Flow = 0.855 kg/s

Horizontal Plane Cut through Bottom Inlet Grill ~

Blocked Fan

MRF 1960 rpm

Velocity Profile: Cooling Package

AVL

Velocity Profiles: CFD Fan Modeling

	Front of Cooling Package	Front of Radiator	Behind Radiator
User Function			
Blocked Fan			
MRF			

Heinz Petutschnig

KULI User Meeting 2005

Coupling 1D - 3D (KULI - SWIFT)

Heinz Petutschnig

KULI User Meeting 2005

30.6.2005 | Page 19

AVL

Resistance Matrix in KULI

1D-3D Interface: Cross Section at Radiator Outlet

Heat Rejection in Dependency of Velocity Profile

Point A: Fan Speed: 1960 rpm Constant Mass Flow: 0.855 kg/s

AVL

Heat Rejection in Dependency of Velocity Profile & Equal Delta p

Point A: Fan Speed: 1960 rpm

Air mass flow in KULI adapted according to air side pressure loss from MRF calculation !

Heat Rejection in Dependency of Velocity Profile

rpm

Fan Speed: 980 rpm Constant Mass Flow: 0.600 kg/s

AVL

Heinz Petutschnig

Point B:

Heat Rejection in Dependency of Velocity Profile & Equal Delta p

Point B: Fan Speed: 980 rpm

Air mass flow in KULI adapted according to air side pressure loss from MRF calculation !

AVL

Heat Rejection at Radiator Heat Rejection at Radiator **3D-CFD Velocity Profile at Radiator Outlet 3D-CFD Velocity Profile at Radiator Outlet** Outlet Radiator – Measurement - Coolant Air Outlet Radiator - Coolant Air 36 0.8 12 12 34 10 10 Flow [kg/s] Mass Flow [%] [kW] 32 8 Heat Rejected [%] 6,2 30 6 Heat Rejected Mass 28 0.6 oolant Air 2,0 Air 26 2 2 0.4 0.4 Coolant 24 0.5 Õ -0,7 -2 -2 22 20 0.4 -4 _/ No CFD No CFD MRF No CFD No CFD MRF Blocked Blocked User User equal dp Function Fan equal dp Function Fan Air Side Pressure Loss Cooling Package [Pa] equal pressure loss 71 80 79 80 80

Sensitivity Analysis

Sensitivity Analysis:

Blocking influence in the upstream direction of the fan

Fan Speed: 1960 rpm

Blocking Influence: Velocity Profile

Point A: Constant Mass Flow = 0.855 kg/s		/s	No 0.9	ormal Vel	ocity [m/s 2.7	s] 3.6	4.5
	User Function	Blocked Fan	MRF				
Cooling Package							
Radiator Only							

Heinz Petutschnig

KULI User Meeting 2005

Blocking Influence: Heat Rejection

Point A: Constant Mass Flow = 0.855 kg/s

No upstream blocking \rightarrow Stronger influence of the fan driven velocity profile

Summary and Conclusions

- Inhomogeneous flow situation leads to higher pressure drop
 → lower air mass flow → less heat rejection (up to ~10%)
- For a given air mass flow the differences in heat rejection, due to pure inhomogeneity, are of less importance!
- For real life application, where the mass flow is unknown, the integration of CFD is highly recommended to determine accurate predictions for mass flow and heat rejection!
- MRF resolves fan geometry and leads to realistic flow conditions at acceptable computing costs
- Downstream influence of fan driven effects much more significant than upstream → important for under hood analysis

Outlook

Prediction of the coolant air mass flow and its achievable accuracy

- total and static pressure boundary conditions
- comparison among fan modeling techniques
- Sliding mesh technique
 - achievable benefits
- Effects of downstream blocking and its predictability by CFD fan models
 - modeling of engine block and other flow obstacles under the hood

Heinz Petutschnig

KULI User Meeting 2005