

Central application of KULI- Engine Model in Engine Cooling and Air Conditioning

Dipl.-Ing. Martin Kronbichler, AUDI AG, I/EK-41

- Functional Layout for Engine Cooling Systems with Simulation at AUDI
- Position of KULI in the Development Prozess at AUDI
- > Application of KULI Engine Model at AUDI
- > Difficulties and Requirements at an Engine Model
- Summary and Outlook

Functional Layout for Engine Cooling Systems at AUDI

Functional Layout for Engine Cooling Systems at AUDI

Methodical and Development accompanying Application of the KULI Engine Modell in the Field of Engine Cooling

> A3 Sportback 2.0I R4 TFSI 147kW

Calculation from Heat up of the Engine Oil and Coolant for the Operating Point v_{max} , Balancing with Test Bench Mesurement and Comparison of the Calculation with Wind Tunnel Mesurements

A6 Limousine 3.0I V6 TDI 165kW

Simulation of Uphill Driving at the Großglockner with decreasing Ambient Temperature and Air Pressure, Comparison with Reality from Test Drive at the Großglockner

> A8 Limousine 6.0I W12 MPI 330kW

Simulation of a High Speed Circuit in Combination with a Handling Course, Calculation from Coolantand Engine Oil Temperature, Comparison with Reality from Test Drive

A3 Sportback 2.0I R4 TFSI 147kW

Calculation of the Heat Up from Engine Oil and Coolant after a defined Change of Load realized on an Engine Test Bench

A3 Sportback 2.0I R4 TFSI 147kW

Calculation of the Heat Up of Engine Oil and Coolant during a Wind Tunnel Mesurement for the Operating Point v_{max}

A6 Limousine 3.0I V6 TDI 165kW

Simulation of Uphill Driving at the Großglockner with decreasing Ambient Temperature and Air Pressure

A6 Limousine 3.0I V6 TDI 165kW

Simulation of Uphill Driving at the Großglockner with different Driving Positions and the Impact on Coolant Temperature

A8 Limousine 6.0I W12 MPI 330kW

Simulation of a High Speed Circuit in Combination with a Handling Course, Calculation of Coolant- und Engine Oil Temperature, Rear Axle Reduction Ratio 1, Balancing of the Simulation with Engine Mesurements

A8 Limousine 6.0I W12 MPI 330kW

Simulation of a High Speed Circuit in Combination with a Handling Course, Calculation of Coolant- und Engine Oil Temperature, Rear Axle Reduction Ratio 2, Caluclation of the changed Coolant and Engine Oil Temperatures

Potential Application in the Development Process

Prospective Application of the Engine Model in the Vehicle Climatisation

Operating Point: Heating Output Test

Vehicle will be operated with 50km/h in the 4th Gear at $T_{ambeint}$ of -20 °C for 30 Minutes. It will be determined the Funtion of the Passenger Cabin Temperature above the Time, $T_{cabin}(t)=?$

time [sec]

Potential Application in the Development Process

Prospective Application of the Engine Model in the Vehicle Climatisation

Operating Point: Heating Output Test

In the Past Simulationmodels based on Input Data (Heat Flow) from Vehicle Mesurements

Views and Requirements to a Engine Model

Risk and economic Views of the actually and future Applications

Summary and Outlook

Current Problems und Questions, Approach and Requirements for process- stable Application

- Standardization of Generating an Engine Model with clear Results at different Users
- How can increase a variable k*A over different Rotational Speeds the Quality of results
- How will be a modification of the combustion during different Operating Points realize?
- > Which Differences do arise by balance between Vehicle and Test Bench?
- How do different Air Flow Velocities on the Engine influence the Convective Heat Dissipation in the Engine Model?
- How clear will be Changes like Performance Tuning or Capacity Enlargement forecast

Current Field of Application of the Engine Model at AUDI

- Analysing Tool for a fast Assessment small Modification regarding Gear Step, Gearbox- or Rear Axle Reduction Ratio on Base of a complete balanced Engine Model
- Senerating of Reference Results and Δ Values on Base of balanced Models

Necessities for extended Application

- > Documentation of the Approach for Generation and Balance, Lighting the physical Background
- Sensitivity and Failure Analysis of Input Parameters and Map Data
- High Quality of Forcast in the early Concept Stadium (without Test Bench Mesurement) for Saving Development Time and Reduction of Iterations

Thank you for your Attention

Dipl.-Ing. Martin Kronbichler, AUDI AG, I/EK-41